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Definition

Question: What is a continuation?

A continuation represents the rest of a computation at
any given point in the computation.

The ‘rest of the computation’ means control state, or the
data structures and code needed to complete a
computation.

The ‘data structure’ is often the stack, and the code is a
pointer to the current instruction. Or, this could all be
heap allocated.
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History

Most languages have facilities for manipulating the
continuation of a computation step.

Early imperative languages provided the GOTO – or
setjmp(3) in C – which would force the computation to
continue at some designated label.

In the 1970’s, additional control patterns were added like
function returns, loop exits and iteration breaks.

Complex examples from this era include Simula 67’s
coroutines, Icon’s generators and Prolog’s backtracking.
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Only a few programming languages provide full,
unrestrained access to continuations.

Scheme was the first production system, first providing
‘catch,’ and then call-with-current-continuation, or
call/cc.
It continues to provide the most robust and systematic
implementation.
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1 Parrot: Continuation
2 Ruby: callcc
3 Scheme: call-with-current-continuation, or call/cc
4 Smalltalk: Continuation currentDo:

In any language which supports closures, it is possible to
manually implement call/cc!

This is a common strategy in Haskell.
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The fixation on call/cc and on the gritty details of its
implementation and semantics has greatly obscured the
simplicity and elegance of continuations.

The motivation for this presentation is to present
continuations in a simple and intuitive way.
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Function Return

Traditionally, a function returns a value, e.g.:

function return

def foo(x):
return x+1

This leaves implicit where this value is to be returned to.
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Explicit Return

The core idea of continuations is to make this behavior
explicit by adding a continuation argument.

Instead of ‘returning’ the value, the function ‘continues’
with the value by giving it as an argument to the
continuation.

‘continued’ function

def foo(x,c):
c(x+1)
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Explicit Return

With this view, a function never ‘returns’ – instead it
‘continues.’

And it is for this reason, continuations have sometimes
been described as gotos with arguments.

This idea is the basis of CPS, or Continuation Passing Style:

1 Function signature gets extra ‘continuation’ argument
2 Function doesn’t return value, instead passes it on as

the continuation argument
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More On CPS

You’ll quickly realize that CPS also unfolds all nested
expressions. An example:

nested return value

def baz(x,y):
return 2*x+y

In the continuation passing style, even primitive operators
such as * or + take an extra continuation argument.
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More On CPS

We can simulate this with the following definitions:

simulated primitives

def add(x,y,c): c(x+y)
def mul(x,y,c): c(x*y)

CPS would transform the baz() function into:

cps transformation

def baz(x,y,c):
mul(2,x,lambda v,y=y,c=c: add(v,y,c))
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Wrap Up

Continuations are as low-level as it gets.

Continuations are the functional expression of the GOTO
statement, and the same caveats apply.

Continuations can quickly result in code that is difficult to
follow: the programmer must maintain the invariants of
control and continuations by hand.

Even hard-core continuation fans don’t use them directly
except as means to implement better-behaved
abstractions.
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Continuations can be used to implement very advanced
control flow patterns of varying rigidity:

1 fibers
2 iterators
3 coroutines
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Generators

The most basic form of a continuation is a subroutine call.

Definition: A generator is a special subroutine that can be
used to control loop iteration behavior.

A generator looks like a function, but behaves like an
iterator.

Generators add two new abstract operations on top of
the subroutine: "suspend" and "resume".
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Coroutines

Coroutines add only one new abstract operation: transfer.

‘Transfer’ names a coroutine to transfer to, and gives a
value to deliver to it.

When A transfers to B, it acts like a generator ’suspend’.

Coroutines are an achingly natural way to model
independent objects that interact with feedback.

A UNIX pipeline is suggestive of their full power.
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Continuations

Give the pedagogical structure so far, you’re primed to
view continuations as enhancements of coroutines.

Continuations aren’t more elaborate than coroutines,
they’re simpler!

Indeed they’re simpler than generators, and even a
simpler "regular call."
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Continuations

This is what makes continuations so confusing at first:
they’re a different basis for all call-like behavior.

Generators and coroutines are variations on what you
already know; continuations challenge your fundamental
view of the programming universe.
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Subroutines

Let’s look at Python.

When Python makes a call, it allocates a frame object.
When a subroutine returns, it decrefs the frame and it
goes away.

Attached to that frame:

1 locals, or a map of name:object bindings
2 evaluation stack for holding temps and dynamic

block-nesting info
3 offset to current byte code instruction, relative to start

of code object’s immutable bytecode vector
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Generators

Generators are a trivial extension on what Python does
with subroutines.

When a generator suspends, it’s just like a return, except
we decline to decref the frame. That’s it!

The locals, and where we are in the computation, aren’t
thrown away.

A ‘resume,’ then, consists of restarting the frame at its next
bytecode instruction, with the locals and eval stack
retained.
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Coroutines

Coroutines are much harder to implement than
generators.

‘Transfer’ names who next gets control, while generators
always return to their (unnamed) caller.

A generator simply "pops the stack" when it suspends,
while a coroutine’s flow need not be stack-like (and often
is not).
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In Python, this is a coroutine-killer, because the C stack
gets intertwingled.

The Python coro implementation uses threads under the
covers (where capturing pieces of the C stack isn’t a
problem).
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A continuation is like what a coro would be if you could
capture its resumption state at any point, and assign that
to a variable.

We can say it adds an abstract operation "capture,"
which snapshots the program counter, call stack, and the
’block stack.’
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The snapshot would be taken at the point of continuation
invocation, and would be packaged into a first-class
’object.’

In a pure vision, a continuation can be captured
anywhere (even in the middle of an expression), and any
continuation can be invoked from anywhere else.
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